Recombinant Protein from Trypanosoma Congolense a Good Diagnostic Antigen in Immunochromatographic Test


  • MochaboK. M., Suganuma K., Thu-Thuy N., Zhou M., Shin-ichiro K., Suzuki Y. and Inoue N.


Immunochromatographic test, Nagana, Trypanosome, Vaccine


Trypanosomes are hemo-flagellate protozoan parasites that cause disease in humans and livestock called sleeping sickness and nagana, respectively. So far, a vaccine has been elusive because of the immunodominant variant surface glycoprotein (VSG) in a phenomenon known as antigenic variation. According to amino acid domains structure, Tc38630 was assumed as a Trypanosoma congolense orthologue of the T. brucei invariant surface glycoprotein (ISG) therefore, a potential diagnostic antigen. Recombinant protein Tc38630 was successfully expressed, characterized and found to be antigenic. Among other serological tests, immunochromatographic test (ICT) has an advantage as a one-step rapid analysis, thus making it a convenient and sensitive diagnostic test .BALB/c mice were immunized with rTc38630 protein and serum was collected for IgG polyclonal antibodies purification for use as control line in ICT. The antigen-antibody reaction was detected by colloidal gold conjugated rTc38630 protein at the test line. The ICT result was found to be consistent with rTc38630 protein-based ELISA. For vaccine studies, five groups of BALB/c mice, were randomized and assigned as recombinant protein, recombinant GST, MCF homogenate, BSF homogenate and PBS and immunized respectively. They were challenged with a lethal dose of T. congolense. The recombinant protein did not protect the mice (survival analysis, P=0.09).

Author Biography

MochaboK. M., Suganuma K., Thu-Thuy N., Zhou M., Shin-ichiro K., Suzuki Y. and Inoue N.

  1. National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, 080- 8555, Obihiro, Hokkaido, Japan. Research Center for Zoonosis Control, Hokkaido University, 060-0808, Sapporo, Hokkaido, Japan.
  2. Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine and Surgery, Egerton University, P.O. Box 536-20115, Njoro, Kenya

*Corresponding author:


Antoine-Moussiaux, N., Buscher, P., Desmecht, D. (2009). Host-parasite interactions in trypanosomiasis: on the way to an antidisease strategy. Infection and Immunity Journal, 77: 1276–1284.
Authié, E., Boulangé, A., Muteti, D., Lalmanach, G., Gauthier, F., Musoke, A. J. (2001). Immunisation of cattle with cysteine proteinases of Trypanosoma congolense: targetting the disease rather than the parasite. International Journal of Parasitology. 31(13):1429-1433.
Balaban, N., Waithaka, H. K., Njogu, A. R., Goldman, R. (1995). Intracellular antigens (microtubule-associated protein copurified with glycosomal enzymes)--possible vaccines against trypanosomiasis. Journal of Infectious Diseases,172(3):845-850.
Bannai, H, Sakurai, T., Inoue, N., Sugimoto, C. and Igarashi, I. (2003). Cloning and expression of mitochondrial heat shock protein 70 of Trypanosoma congolense and potential use as a diagnostic antigen. Clinical and Diagnostic Laboratory Immunology, 10(5):926-933.
Bosompem, K. M., Ayi, I., Anyan, W. K., Arishima, T., Nkrumah, F. K., and Kojima, S. (1997). A monoclonal antibody-based dipstick assay for diagnosis of urinary schistosomiasis. Transactions of the Royal Society of Tropical Medicine and Hygiene, 91(5):554-556.
Bossard, G., Boulange, A., Holzmuller, P., Thévenon, S., Patrel, D. and
Authié, E. (2010). Serodiagnosis of bovine trypanosomosis based on HSP70/BiP inhibition ELISA. Veterinary Parasitology, 173 (1–2): 3947.
Boulangé, A., Serveau, C., Brillard, M., Minet, C., Gauthier, F., Diallo, A., Lalmanach, G. and Authié, E. (2001). Functional expression of the catalytic domains of two cysteine proteinases from Trypanosoma congolense. International Journal of Parasitology. 31(13):1435-1440.
Brito, L. A. and Singh, M. (2011). Acceptable levels of endotoxin in vaccine formulations during preclinical research. Journal of Pharmaceutical Sciences, 100(1):34-37.
Chandler, J., Gurmin T. and Robinson N. (2000). The place of gold in rapid tests. IVD Technology,6: 37–49.
Chappuis, F., Loutan, L, Simarro, P., Lejon, V. and Büscher, P. (2005). Options for field diagnosis of human African trypanosomiasis. Clinical Microbiology Reviews, 18(1):133-146.
Chappuis, F., Rijal, S., Soto, A., Menten, J. and Boelaert, M. (2006). A metaanalysis of the diagnostic performance of the direct agglutination test and rK39 dipstick for visceral leishmaniasis. BMJ, 333(7571):723.
Cheng, Z., Goto, Y., Nguyen, T. T., Sakurai, T., Zang, J., Kawazu S. and Inoue N. (2012). Preliminary studies for development of an immunochromatographic test (ICT) for detection of antibody against salivarian trypanosomes by using recombinant ribosomal P0 protein. Protozoology Research.22:10-18.
Donelson, J. E. (2003). Antigenic variation and the African trypanosome genome. Acta Tropica.85(3):391-404.
Donelson, J. E., Hill, K. L. and El-Sayed, N. M. (1998). Multiple mechanisms of immune evasion by African trypanosomes. Molecular and Biochemical Parasitology, 91(1):51-66.
Esser, K. M., Schoenbechler, M. J. and Gingrich, J. B. (1982). Trypanosoma rhodesiense blood forms express all antigen specificities relevant to protection against metacyclic (insect form) challenge. Journal of Immunology. 129(4):1715-1718.
Fleming, J. R., Sastry, L., Crozier, T. W. M., Napier, G. B., Sullivan, L. and Ferguson, M. A. J. (2014). Proteomic Selection of Immunodiagnostic Antigens for Trypanosoma congolense. PLoS Neglected Tropical Diseases, 8(6): e2936.
Goo, Y. K., Lee, N., Terkawi, M. A., Luo, Y., Aboge, G. O., Nishikawa, Y., Suzuki, H., Kim, S. and Xuan, X. (2012). Development of a rapid immunochromatographic test using a recombinant thrombospondinrelated adhesive protein of Babesia gibsoni. Veterinary parasitology, 190(3-4):595-598.
Hirumi, H. and Hirumi, K. (1991). In vitro cultivation of Trypanosoma congolense bloodstream forms in the absence of feeder cell layers. Parasitology. 102 (2):225-236.
Huang, X., Xuan, X., Hirata, H., Yokoyama, N., Xu, L., Suzuki, N. and Igarashi, I. (2004b). Rapid immunochromatographic test using recombinant SAG2 for detection of antibodies against Toxoplasma gondii in cats. Journal of Clinical Microbiology, 42(1):351-353.
Huang X, Xuan X., Verdida, R. A., Zhang, S., Yokoyama, N., Xu L. and Igarashi, I. (2006). Immunochromatographic test for simultaneous serodiagnosis of Babesia caballi and B. equi infections in horses. Clinical and Vaccine Immunology, 13(5):553-555.
Huang, X., Xuan, X., Xu, L., Zhang, S., Yokoyama, N., Suzuki N. and Igarashi, I. (2004a). Development of an immunochromatographic test with recombinant EMA-2 for the rapid detection of antibodies against Babesia equi in horses. Journal of Clinical Microbiology, 42(1):359361.
Hutchinson, O. C., Webb, H., Picozzi, K., Welburn, S. and Carrington, M. (2004). Candidate protein selection for diagnostic markers of African trypanosomiasis. Trends in Parasitolology, 20(11): 519-523.
Jackson A. P, et al., (2012). Antigenic diversity is generated by distinct evolutionary mechanisms in African trypanosome species. Proceedings of the National Academy of Sciences of the United States of America, 109(9):3416-3421.
Jackson D. G., Windle H. J. and Voorheis, H. P. (1993). The identification, purification, and characterization of two invariant surface glycoproteins located beneath the surface coat barrier of bloodstream forms of Trypanosoma brucei. Journal of Biological Chemistry, 268(11):80858095.
Jamonneau, V, Ravel, S, Garcia, A, Koffi, M, Truc, P, Laveissière, C, Herder,
S, Grébaut, P, Cuny, G, Solano, P (2004). Characterization of Trypanosoma brucei s.l. infecting asymptomatic sleeping-sickness patients in Côte d'Ivoire: a new genetic group? Annals of Tropical Medicine and Parasitology, 98(4):329-337.
Jia, H., Liao, M., Lee, E., Nishikawa, Y., Inokuma, H., Ikadai, H., Matsuu,
A., Igarashi I. and Xuan X. (2007). Development of an immunochromatographic test with recombinant BgSA1 for the diagnosis of Babesia gibsoni infection in dogs. Parasitology Research, 100(6):1381-1384.
Kateregga, J., Lubega, G. W., Lindblad, E. B., Authié, E., Coetzer, T. H. and Boulangé, A. F. (2012). Effect of adjuvants on the humoral immune response to congopain in mice and cattle.BMC Veterinary Research, 8:63.
Kim, C. M., Blanco, L. B., Alhassan, A., Iseki, H., Yokoyama, N., Xuan, X. and Igarashi I. (2008). Development of a rapid immunochromatographic test for simultaneous serodiagnosis of bovine babesioses caused by Babesia bovis and Babesia bigemina. American Journal of Tropical Medicine and Hygiene, 78(1):117-121.
Lança, A. S., de Sousa, K. P., Atouguia, J., Prazeres, D. M., Monteiro, G. A. and Silva, M. S. (2011). Trypanosoma brucei: immunisation with plasmid DNA encoding invariant surface glycoprotein gene is able to induce partial protection in experimental African trypanosomiasis. Experimental Parasitology, 127(1):18-24.
Lanham, S. M. and Godfrey, D. G. (1970). Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Experimental Parasitology, 28: 521-534.
Li, S. Q., Fung, M. C., Reid, S. A., Inoue, N. and Lun, Z. R. (2007). Immunization with recombinant beta-tubulin from Trypanosoma evansi induced protection against T. evansi, T. Equiperdum and T. b. brucei infection in mice. Parasite Immunology, 29(4):191-199.
Li, S. Q., Yang, W. B., Ma, L. J., Xi, S. M., Chen, Q. L., Song, X. W., Kang J. and Yang L. Z. (2009). Immunization with recombinant actin from
Trypanosoma evansi induces protective immunity against T. evansi, T. Equiperdum and T. b. brucei infection. Parasitology Research, 104(2):429-435.
Liao, M., Zhang S., Xuan, X., Zhang, G., Huang, X., Igarashi, I. and Fujisaki, K. (2005). Development of rapid immunochromatographic test with recombinant NcSAG1 for detection of antibodies to Neospora caninum in cattle. Clinical and Diagnostic Laboratory Immunology, 12(7):885-887.
Lubega, G. W., Byarugaba, D. K. and Prichard, R. K. (2002a). Immunization with a tubulin-rich preparation from Trypanosoma brucei confers broad protection against African trypanosomosis. Experimental Parasitology, 102(1):9-22.
Lubega, G. W., Ochola, D. O. and Prichard, R. K. (2002b). Trypanosoma brucei: anti-tubulin antibodies specifically inhibit trypanosome growth in culture. Experimental Parasitology, 102(3-4):134-142.
Luo, Y., Jia, H., Terkawi, M. A., Goo, Y. K., Kawano, S., Ooka, H., Li Y., Yu L., Cao S., Yamagishi J., Fujisaki K., Nishikawa Y., Saito-Ito A., Igarashi I. and Xuan X. (2011). Identification and characterization of a novel secreted antigen 1 of Babesia microti and evaluation of its potential use in enzyme-linked immunosorbent assay and immunochromatographic test. Parasitology International, 60(2):119125.
Magez, S., Caljon, G., Tran, T., Stijlemans, B. and Radwanska, M. (2010). Current status of vaccination against African trypanosomiasis. Parasitology, 137(14):2017-2027.
Magez, S. and Radwanska, M. (2009). African trypanosomiasis and antibodies: implications for vaccination, therapy and diagnosis. Future Microbiology, 4(8):1075-1087.
Manful, T., Mulindwa, J., Frank, F. M. Clayton, C. E. and Matovu, E. (2010).A search for Trypanosoma brucei rhodesiense diagnostic antigens by proteomic screening and targeted cloning. PLoS One, 5(3):e9630.
May K. (1991). Home tests to monitor fertility.American Journal of Obstetrics and Gynecology, 165: 2000–2002.
Mkunza, F, Olaho, W. M. and Powell, C. N. (1995). Partial protection against natural trypanosomiasis after vaccination with a flagellar pocket antigen from Trypanosoma brucei rhodesiense.Vaccine,13(2):151-154.
Mochabo, K. M., Zhou, M., Suganuma, K., Kawazu, S., Suzuki, Y. and Inoue N. (2013). Expression, immunolocalization and serodiagnostic value of Tc38630 protein from Trypanosoma congolense. Parasitology Research, 112(9):3357-3363.
Mora, M., Veggi, D., Santini, L., Pizza, M. and Rappuoli, R. (2003). Reverse vaccinology. Drug Discovery Today, 8(10):459-464.
Naessens, J. (2006). Bovine trypanotolerance: A natural ability to prevent severe anaemia and haemophagocytic syndrome? International Journal of Parasitology, 36(5):521-528.
Nguyen, T. T., Motsiri, M. S., Taioe, M. O., Mtshali, M. S., Goto, Y., Kawazu, S., Thekisoe, O. M. and Inoue, N. (2015). Application of crude and recombinant ELISAs and immunochromatographic test for serodiagnosis of animal trypanosomosis in the Umkhanyakude district
of KwaZulu-Natal province, South Africa. Journal of Veterinary Medical Science,14-0330.
Nolan D. P., Jackson D. G., Windle H. J., Pays A., Geuskens M., Michel A., Voorheis H. P. and Pays E. (1997). Characterization of a novel, stagespecific, invariant surface protein in Trypanosoma brucei containing an internal, serine-rich, repetitive motif. Journal of Biological Chemistry, 272(46):29212-29221.
O'Beirne, C., Lowry, C. M. and Voorheis, H. P. (1998). Both IgM and IgG anti-VSG antibodies initiate a cycle of aggregation-disaggregation of bloodstream forms of Trypanosoma brucei without damage to the parasite. Molecular and Biochemical Parasitology, 91(1):165-193.
OIE, (2013). Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, 7 edn. OIE, Paris.
Paek, S. H., Lee, S. H., Cho, J. H. and Kim, Y. S. (2000). Development of rapid one-step immunochromatographic assay. Methods, 22(1):53-60.
Paling, R.W., Moloo, S. K., Scott, J. R., Gettinby, G., Mcodimba, F. A. and Murray, M. (1991a) .Susceptibility of N'Dama and Borancattleto sequential challenges with tsetse-transmitted clones of Trypanosomacongolense. Parasite Immunology, 13: 427–445.
Posthuma-Trumpie, G. A., Korf, J. and van Amerongen, A. (2009). Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. A literature survey. Analytical and Bioanalytical Chemistry, 393(2):569-582.
Radwanska, M., Magez, S., Dumont, N., Pays, A., Nolan, D. and Pays, E.
(2000). Antibodies raised against the flagellar pocket fraction of Trypanosoma brucei preferentially recognize HSP60 in cDNA expression library. Parasite Immunology, 22(12):639-650.
Rajput, Z. I., Hu S, Xiao, C. and Arijo, A. G. (2007). Adjuvant effects of saponins on animal immune responses. Journal of Zhejiang University Science B, 8:153-161.
Ramey, K., Eko, F. O., Thompson, W. E., Armah, H., Igietseme, J. U. and Stiles, J. K. (2009). Immunolocalization and challenge studies using a recombinant Vibrio cholerae ghost expressing Trypanosoma brucei Ca(2+) ATPase (TBCA2) antigen. American Journal of Tropical Medicineand Hygiene, 81(3):407-415.
Rappuoli, R. (2000). Reverse vaccinology. Current Opinion in Microbiology, 3(5):445-450.
Rappuoli, R. (2001). Reverse vaccinology, a genome-based approach to vaccine development. Vaccine, 19(17-19):2688-2691.
Richardson, D. C., Ciach M., Zhong K. J., Crandall I. and Kain K. C. (2002). Evaluation of the Makromed dipstick assay versus PCR for diagnosis of Plasmodium falciparum malaria in returned travelers. Journal of Clinical Microbiology, 40(12):4528-4530.
Roddy, P., Goiri, J., Flevaud, L., Palma, P. P., Morote, S., Lima, N., Villa, L., Torrico, F. and Albajar-Viñas, P. (2008). Field evaluation of a rapid immunochromatographic assay for detection of Trypanosoma cruzi infection by use of whole blood. Journal of Clinical Microbiology, 46(6):2022-2027.
Rudramurthy, G. R., Sengupta, P. P., Balamurugan, V., Prabhudas, K. and Rahman H. (2013). PCR based diagnosis of trypanosomiasis exploring invariant surface glycoprotein (ISG) 75 gene. Veterinary Parasitology, 193(1-3):47-58.
Sakurai, T., Sugimoto, C. and Inoue, N. (2008). Identification and molecular characterization of a novel stage-specific surface protein of Trypanosoma congolense epimastigotes. Molecular and Biochemical Parasitology,161(1):1-11.
Schofield, L. (2007). Rational approaches to developing an anti-disease vaccine against malaria Microbes and Infection, 9: 784–791.
Sundar, S., Reed, S. G., Singh, V. P., Kumar, P. C. and Murray, H. W. (1998). Rapid accurate field diagnosis of Indian visceral leishmaniasis. Lancet, 351(9102):563-565.
Tabel, H., Wei G. and Bull, H. J. (2013). Immunosuppression: cause for failures of vaccines against African Trypanosomiases. PLoS Neglected Tropical Diseases, 7(3): e2090.
Tabel, H., Wei, G. and Shi, M. (2008). T cells and immunopathogenesis of experimental African trypanosomiasis. Immunological Reviews, 225:128-139.
Tanaka, R., Yuhi T., Nagatani, N., Endo T., Kerman, K., Takamura, Y. and Tamiya E. (2006). A novel enhancement assay for immunochromatographic test strips using gold nanoparticles. Analytical and Bioanalytical Chemistry, 385(8):1414-1420.
Vickerman, K. and Barry, J. D. (1982). African trypanosomiasis. In: Cohen S, Warren KS (Eds), Immunology of Parasitic Infections. Blackwell Scientific Publications, Oxford, pp. 204-260.
Wei, G, Bull, H, Zhou, X. and Tabel, H. (2011). Intradermal infections of mice by low numbers of african trypanosomes are controlled by innate resistance but enhance susceptibility to reinfection. Journal of Infectious Diseases, 203(3):418-429.
Wongsrichanalai, C, Barcus, M. J., Muth, S, Sutamihardja, A. and Wernsdorfer, W. H. (2007). A review of malaria diagnostic tools: microscopy and rapid diagnostic test (RDT). American Journal of Tropical Medicine and Hygiene. 77(6):119-127.
Ziegelbauer, K., Multhaup, G. and Overath P. (1992). Molecular characterization of two invariant surface glycoproteins specific for the bloodstream stage of Trypanosoma brucei. Journal of Biological Chemistry, 267(15):10797-10803.
Ziegelbauer, K. and Overath, P. (1992). Identification of invariant surface glycoproteins in the blood-stream stage of Trypanosoma brucei. Journal of Biological Chemistry, 267(15):10791-10796.
Ziegelbauer, K., Rudenko, G., Kieft R. and Overath, P. (1995). Genomic organization of an invariant surface glycoprotein gene family of Trypanosoma brucei. Molecular and Biochemical Parasitology, 69(1):53-63.




How to Cite

MochaboK. M., Suganuma K., Thu-Thuy N., Zhou M., Shin-ichiro K., Suzuki Y. and Inoue N. (2019). Recombinant Protein from Trypanosoma Congolense a Good Diagnostic Antigen in Immunochromatographic Test. Egerton Journal of Science and Technology, 16(1-139). Retrieved from



Published Articles